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ABSTRACT

We present a framework for unsupervised detection of non-
verbal behavioral cues—hand gestures, pose, body move-
ments, etc.—from a collection of motion capture (MoCap)
sequences in a public speaking setting. We extract the cues
by solving a sparse and shift-invariant dictionary learning
problem, known as shift-invariant sparse coding. We find
that the extracted behavioral cues are human-interpretable
in the context of public speaking. Our technique can be ap-
plied to automatically identify the common patterns of body
movements and the time-instances of their occurrences, min-
imizing time and efforts needed for manual detection and
coding of nonverbal human behaviors.
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1. INTRODUCTION
Public speaking is a widely-used method for articulating

ideas. Understanding the influence of nonverbal behaviors in
a public speaking setting is an interesting research topic [6].
It might be possible to improve our understanding of such
influence by using data analytic approaches over a large col-
lection of public speaking data. Human Activity or Action
Recognition is a growing field of research that is already aim-
ing towards such analysis. However, this domain is mostly
focused on supervised classification of body language [1, 4].
It is often necessary to utilize unsupervised approaches in
order to extract common body movement patterns without
prior knowledge. For example, if we want to know all the
common fidgeting patterns in a public speaking setting, we
need an unsupervised algorithm to find these patterns. With
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supervised approach, we would have to provide samples of
the fidgeting behaviors as an input to the algorithm. This
is infeasible due to the lack of prior knowledge.

We propose a framework1 to automatically identify and
localize the common behavioral cues [6] in a public speak-
ing video. In order to track the body movements of the
speaker, we use a Kinect skeleton tracker [12]. The tracker
provides time dependent, three dimensional signal of 20 joint
locations of the speaker—collectively known as Motion Cap-
ture (MoCap) signal. We apply shift-invariant sparse cod-
ing (SISC) [9, 5] to extract the behavioral cues that are
manifested as small temporal patterns in the MoCap signal.
SISC is formulated as an optimization problem for learning
a dictionary of temporal patterns, where the patterns ap-
pear within the signal in a sparse manner. We notice that
the learned set of patterns are human-interpretable. People
can relate the extracted behavioral cues to real-life public
speaking scenarios.

Our work has several future applications. For instance,
it can be used to mine different types of behavioral pat-
terns from time sequence data (e.g. variations in facial ex-
pressions, vocal characteristics, body language, etc.). As
the patterns are human-interpretable, this technique can be
used to build an ontological coding schema for behavioral
cues by simultaneously learning and manually annotating
meaningful labels. Finally, the behavioral cues learned from
this process could be used as “features” to train supervised
algorithms in order to predict human performance for public
speaking or any other forms of human communications.

2. RELATED LITERATURE
Computational analysis of nonverbal behaviors [14, 8, 1]

has recently received a considerable attention from the re-
searchers. Metaxas et al. [8] summarized works that fo-
cus on sensing body movements and representing them as
a sequence of numbers (facial point trackers represent fa-
cial movements as a sequence of landmark points, Kinect
skeleton trackers [12] represent full body movements as a
sequence of joint locations, etc.)

Researchers also work on holistically predicting the out-
come of specific tasks through automated analysis of nonver-
bal behaviors—outcomes of dating [11], job interviews [10],
public speaking [2], etc. Most of these works use a fixed tax-
onomy and summary statistics like mean, variance, minima,
maxima, count. These features may not be granular enough
to segment or detect nonverbal behavioral cues.

1A demo is available in http://hci.cs.rochester.edu



Figure 1: A simplified illustration of a problem that
can be introduced from overlapping activities.

Activity analysis [1, 4] is another area related to nonverbal
behavioral analysis. As Aggarwal et al. described [1], the fo-
cus of this type of work is to identify the activities (walking,
jumping, talking, etc.) within a video, as well as to identify
the start and end times of the segments. This domain is
mostly focused on supervised classification approaches.

There exist a few unsupervised methods for activity anal-
ysis as well. Zhou et al. [15] proposed a method named
Aligned Cluster Analysis (ACA) for simultaneously segment-
ing and clustering temporal sequences using Dynamic Time
Warping (DTW) and k-means clustering. In this approach,
the temporal segments are assumed to be non-overlapping.
However, in real life, the segments might overlap depending
on the signal representations. For example, if we consider
only the three dimensional coordinates of a person’s hand,
it may appear as different patterns depending on whether
the person is showing a hand gesture or physically moving
about (Figure 1). Now, if the person performs both actions
together, the resulting pattern will be overlapped. Many dif-
ferent spurious patterns may emerge depending on how they
overlap—these are typically difficult to detect. Our model
can address this issue.

Our work is inspired by the SISC model presented by
Mørup et al. [9]. An optimization problem similar to SISC
is applied by Li et al. [7] in the action recognition problems.
However, they considered the input as a set of K indepen-
dent 1D signals. On the other hand, we consider it as a
multivariate signal with K components. For MoCap data,
our model allows the temporal patterns to capture the in-
terdependence among the body-joints. In addition, we solve
the optimization problem using a Gradient Descent (GD)
approach, as opposed to the Orthogonal Matching Pursuit
(OMP) used by Li et al [7]. GD relaxes the requirement of
specifying a maximum number of repetitions for the patterns
within the signal.

3. NONVERBAL BEHAVIORAL CUES
Behavioral scientists define nonverbal behavioral cues as

patterns observed in gestures, posture, touching behavior,
facial expressions, eye behavior, vocal behavior, etc. [6].
Vinciarelli et al. [14] notes that “The term behavioural cue
is typically used to describe a set of temporal changes in
neuromuscular and physiological activity that last for short
intervals of time (milliseconds to minutes).”

To capture the essence of this definition, we assume a
specific structure for the behavioral (MoCap) signals, as il-
lustrated in Figure 2. We model the signals to be composed
of several small patterns (behavioral cues). These patterns
get activated sparsely at various time-instances. This sparse
activation ensures that a pattern is not distorted by over-
lapping with itself. However, different patterns are allowed
to overlap. A mathematical formulation of this model is
discussed in the following section.
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Figure 2: An assumption about the behavioral signal
generation model.

4. PROBLEM FORMULATION
Let f [n] be a finite length multivariate behavioral signal

with K elements. More specifically, it is the output of the
skeleton tracker at every frame, representing the x, y, z co-
ordinates of the body joints. The length of the signal is N ;
i.e. 0 ≤ n < N . The mathematical model of the behavioral
signal, fmodel[n], is as follows:

D−1∑

d=0

αd[n] ∗ ψd[m] =

D−1∑

d=0

N−1∑

u=0

αd[u]ψd[n− u] (1)

where, ψd[m] denotes the dth pattern (0 ≤ d < D, 0 ≤
m < M). In general, the patterns are short; i.e. M ≪ N .
The activation sequence, αd[n], consists of sparse impulses.
These impulses represent the locations where the pattern d
appears in the signal. Length of αd[n] is the same as the
signal length, N . The convolution (∗) of ψd[m] with a single
impulse of αd[n] shifts the pattern d to the location of the
impulse. We use this idea to make the behavioral cues shift-
invariant.

To estimate the model parameters, ψd[m] and αd[n], we
minimize the total squared difference between the actual
signal and the model, fmodel[n]. As the behavioral cues ac-
tivate sparsely over time, most of the elements of α should
be zero. We enforce sparsity over the activation sequence
by minimizing the ℓ1 norm of α. In addition, we enforce
non-negativity over α to avoid upside-down patterns. The
overall optimization problem is shown in the Eq (2)

ψ̂[m], α̂[n] = argmin
ψ,α

1

2
‖f [n] − fmodel[n]‖

2

︸ ︷︷ ︸

P (ψ,α)

+λ ‖α‖1
︸ ︷︷ ︸

Q(α)

s.t. ‖ψ‖2F ≤ 1 and, ∀nα[n] ≥ 0.

(2)

Here, ‖α‖1 :=
∑D−1
d=0

∑N−1
n=0 |αd[n]| represents the ℓ1 norm

of α. λ is the Lagrange multiplier controlling the weights
imposed on the sparsity constraint of α. We also use a con-
straint ‖ψ‖2

F
≤ 1 to ensure that ψ is not affected by the

values of λ.

5. OPTIMIZATION
The objective function shown in (2) is generally non-convex.

However, when any one of the model parameters (α or ψ)
is held fixed, it becomes convex over the other parameter.
We use alternating proximal gradient descent approach to
solve this optimization problem, as shown in Algorithm 1.
In this approach, we alternatively update the parameters.
For instance, we hold ψ fixed while updating α, and vice
versa. It reduces the error after each iteration and guaran-
tees to converge. However, there is no guarantee that it will
converge to the global optimum. We rerun the algorithm
multiple times with random initialization to make it likely
to find the global optimum.



Algorithm 1: Learning the Behavioral Cues

Input: f [n], M , D and λ
Output: ψ, α
Initialize;
i← 0;
α← 0, ψ ← random;
while not Converge do

Update ψ;

reconstruct fmodel ←
∑D−1
d=1 αd ∗ ψd;

calculate ∇ψ P using f , fmodel and α [Eq. (4)];

ψ(i+1) ← project(ψ(i) − γψ∇ψ P );
Update α;

reconstruct fmodel ←
∑D−1
d=1 αd ∗ ψd;

calculate ∇α P using f , fmodel and ψ [Eq. (5)];

α(i+1) ← shrink(α(i) − γα∇α P ) [Eq. (3)];
i← i+ 1

The objective function in (2) is a composite function with
a smooth part, P (ψ,α), and a non-smooth part, Q(α). We
use an iterative soft-thresholding approach for this minimiza-
tion, as reviewed by Beck et al. [3]. We update α by the gra-
dients of P (ψ,α), followed by a shrink operation, as shown
in (3). This operation reduces each component of α towards
zero and thus resulting in a sparse solution. We simulta-
neously project α to the set of positive numbers to enforce
non-negativity.

α[n]← sgn(α[n])max(0, |α[n]| − γλ) ∀0≤n<N

α[n]← max(0, α[n]) ∀0≤n<N
(3)

The gradients of P with respect to ψ and α (∇ψ P and
∇α P ) are given by Eq (4) and (5), respectively.

∂P

∂ψd′,k′ [m′]
=

N−1∑

n=0

{fmodel,k′ [n]− f
′
k[n]}αd′ [n−m

′] (4)

∂P

∂αd′ [n′]
=

K−1∑

k=0

N−1∑

n=0

{fmodel,k[n]− fk[n]}ψd′ ,k[n−m
′] (5)

In order to determine a correct learning rate γψ or γα, we
use a backtracking line search approach. We gradually de-
crease the learning rate until the objective function, F(xi),
satisfies F(xi+1) ≤ Mxi,γi(xi+1), where, Mxi,γi represents
a function as defined in (6).

Mxi,γi(xi+1) := F(xi) + 〈∇F(xi), xi+1 − xi〉

+
1

2γi
‖xi+1 − xi‖

2 +Q(α).
(6)

Here, xi refers to the model parameters (ψ or α) in the ith

iteration.
In the project procedure, we use (7) to project ψd[m]

on the set {ψd[m] | ‖ψd[m]‖2
F
≤ 1} at every iteration. This

enforces the constraint ‖ψd[m]‖2F ≤ 1.

ψd[m]← min (‖ψd[m]‖
F
, 1)

ψd[m]

‖ψd[m]‖
F

(7)

We set the value of λ using the L-curve method, as de-
scribed by Mørup et al. [9].

Figure 3: A sample frame from one of the videos in
the public speaking dataset.

6. DATA
We applied this algorithm on two different types of datasets.

The first type was a synthetically-formulated dataset with
overlapping patterns. We used this data to empirically check
if the algorithm could solve the problem described in Fig-
ure 1. The second type was a real dataset, collected in an
actual public speaking scenario [13].

The public speaking dataset contained videos (Figure 3)
and MoCap sequences of 55 public speeches given by 20
students—12 males and eight females. Each speech was ap-
proximately three minutes long. The MoCap sequences were
captured by a Kinect skeleton tracker. All the sequences
contained x, y, and z coordinates of 20 joints of the speaker’s
body. Therefore, each MoCap signal was a time-varying sig-
nal with 60 components.

Figure 4: The test of SISC algorithm using
synthetically-generated data.

7. RESULTS
The results of running the algorithm on both synthetic

and real data are discussed below.

7.1 Synthetic Data
We illustrate a synthetically-generated data in Figure 4.

The top row shows two patterns (ψ0 and ψ1) in a three di-
mensional signal (i.e. K = 3) that were used to construct
the input data (row four). The second and the third row
illustrate the activation sequences α0 and α1, respectively.
We notice that the reconstructed patterns (row seven) are
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Figure 5: A few behavioral cues automatically extracted from the public speaking data. The length of each
behavioral cue (M) was set to 2 seconds. We highlighted the bones showing large movements in time.

almost identical to the original patterns (row one), although
their order is not same. Notice that the original activation
sequences (second and third rows) contain an impulse at
index 160, indicating an overlap of the patterns. The recon-
structed plots of the activation sequences (fifth and sixth
rows) show that this overlap was perfectly identified and de-
coupled. This shows that SISC can handle overlapping pat-
terns. However, this is not true for all possible cases. For
example, if the result of overlapping signals is orthogonal
to any of its constituents, SISC will not be able to decou-
ple them. Nevertheless, such orthogonality is not likely in
practice.

7.2 Real Data
The algorithm was run individually on each public speak-

ing MoCap sequence. A few behavioral cues captured by
the algorithm are shown in Figure 5. Each sequence of the
skeletons represents a single behavioral cue that the algo-
rithm extracted automatically. The position of the skeleton
represents different instances in time. We observed that,
the patterns represent the most common body movements
in the sequence. We say the behavioral cues are “human-
interpretable” if we can associate the retrieved movement
patterns of the skeleton with the actual body movements
shown in the videos purely through visual observation. How-
ever, both the notion of interpretibility and the actual in-
terpretation of the patterns are subjective and manually as-
signed by the authors.

The time length of the behavioral cues, M , was heuris-
tically set to two seconds. If M is too small (< 0.5 sec),
only short parts of the original sequence are captured. In
that case, the captured patterns become difficult to inter-
pret. On the other hand, increasing M (2 sec < M < 5 sec)
does not seem to have much influence on the interpretibility
of the patterns. However, we’ve noticed multiple patterns
of body movements to be merged together when M is too
large (e.g. M > 8 seconds).

The parameter D controls the maximum number of pat-
terns to be extracted from the signal. The extracted pat-
terns lose interpretibility if D is set too low (e.g. D ≤ 2).
On the other hand, setting D to a large value does not have
any negative effect on the interpretibility. In that case, the
additional patterns show up as a signal of all zeros. However,
increasing D slows down the program linearly.

8. CONCLUSION
In this paper, we presented a mathematical framework for

unsupervised extraction of body movement patterns. We
used shift-invariant sparse coding to extract the patterns.
We noticed that the extracted patterns are human-interpretable,

that is, we could manually associate the patterns with the
movements shown in the video. In the future, this frame-
work could be used to mine common body movement pat-
terns (e.g., fidgeting) in public speaking scenarios. We shall
try to apply this framework to extract patterns from other
behavioral signals (e.g., facial expressions, prosody, etc.). A
demo of our framework is available in hci.cs.rochester.edu.
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